Periods, geometry and arithmetic in quantum fields and strings

Abhijnan Rej

30.06.2010

Two topics

- Feynman integrals and motives
- Landscape of string vacua

Underlying unifying theme: periods.

In this talk, I focus mostly on the first.

Main results

- large classes of Feynman integrals can be viewed as periods of supermanifolds (with *Marcolli*)
- an explicit formula for graph polynomials under insertion (with Bergbauer)
- characteristic classes of some graph hypersurfaces
- NP completeness in deciding gauge groups based on rank
- (speculative!) periods, heights, and string compactifications

T

Feynman graphs and motives

Feynman graphs and motives

- Broadhurst-Kreimer 90's: large classes of Feynman graphs evaluate to MZV.
- Deligne-Goncharov: MZV's are periods of mixed Tate motives.
 Are there such objects associated to Feynman graphs?
- Bloch-Esnault-Kreimer: Yes for WS_n by naturally associated varieties to graphs as zeros of certain polynomials associated to graphs.
- Earlier work due to Belkale-Brosnan: motives associated to Feynman graphs generate the (Grothendieck) ring of varieties over $Spec \mathbb{Z}$ (disproof of a conjecture of Kontsevich).

Parametric form of a log-divergent Feynman integral associated to a graph with n edges and in D dimensions:

$$U(\Gamma) = \int_{\Sigma_n} \frac{\Omega}{\Psi_{\Gamma}^{D/2}}$$

where

$$\Omega = \sum_{i=0}^{n} (-1)^{i+1} t_i dt_1 \wedge \cdots \wedge \widehat{dt_i} \wedge \cdots \wedge dt_n$$

is the volume form in $\mathbb{P}^{n-1}(\mathbb{R})$, and

$$\Psi_{\Gamma}(t) := \sum_{T} \prod_{e \notin T} t_e.$$

 $(T: a spanning tree of \Gamma)$

Definition

$$X_{\Gamma} = \{\Psi_{\Gamma} = 0\} \subset \mathbb{P}^{n-1}$$

Basic object of study:

$$(\mathbb{P}^{n-1}\setminus X_{\Gamma},\Delta)$$

where
$$\Delta = \{ \prod_{i=1}^n t_i = 0 \} \supset \partial \Sigma_n$$

Properties of X_{Γ}

- Typically singular with singular locus of small codimension
- Integral diverges whenever $X_{\Gamma} \cap \Delta \neq \emptyset$ blow-ups needed!

We will focus on certain problems related to X_{Γ} and Ψ_{Γ} .

A main result needed:

$$\Psi_{\Gamma}(t) = \det M_{\Gamma}(t),$$

where $M_{\Gamma}(t)$ is constructed as follows.

Let

•
$$n = \#E(\Gamma)$$
, $\ell = b_1(\Gamma)$ (# of loops), $\{l_1, \ldots, l_\ell\}$ basis of $H_1(\Gamma, \mathbb{Z})$

$$\bullet \ \eta_{ik} = \begin{cases} +1, & \text{edge } e_i \in \text{loop } l_k \text{, same orientation} \\ -1, & \text{edge } e_i \in \text{loop } l_k \text{, reverse orientation} \\ 0, & \text{otherwise} \end{cases}$$

Then

$$(M_{\Gamma})_{kr}(t) := \sum_{i=0}^{n} t_i \eta_{ik} \eta_{ir}$$

for
$$t = (t_0, \dots, t_{n-1}) \in \Sigma_n$$
, $t_n = 1 - \sum_{i=0}^{n-1} t_i$.

- $p_i \in \mathbb{R}^D$: real variables associated to edges of Γ
- $s_k \in \mathbb{R}^D$: real variables associated to loops of Γ
- $q_i(p) := p_i^2 m^2$: inverse propagator

Upon change of variables $p_i = u_i + \sum_{k=1}^{\ell} \eta_{ik} s_k$ with the constraint $\sum_{i=0}^{n} t_i u_i \eta_{ik} = 0$, plus some manipulations, we have (for $n = D\ell/2$)

$$\int \frac{d^D s_1 \cdots d^D s_{\ell}}{q_0 \cdots q_n} = C_{\ell,n} \int_{\Sigma_n} \frac{dt_0 \cdots dt_{n-1}}{\det M_{\Gamma}(t)^{D/2}},$$

where

$$C_{\ell,n} = \int \frac{d^D x_1 \cdots d^D x_\ell}{(1 - \sum_k x_k^2)^n}.$$

Generalization of log-divergent integrals

Theorem — Suppose given a graph with n edges of which f fermionic and b = n - f bosonic. Assume there exists a choice of basis of $H_1(\Gamma, \mathbb{Z})$ satisfying

$$n - \frac{f}{2} + \frac{D}{2}(\ell_f - \ell_b) = 0.$$

Then the following identity holds:

$$\int \frac{\not q_1 \cdots \not q_f}{q_1 \cdots q_n} d^D s_1 \cdots d^D s_{\ell_b} d^D \sigma_1 \cdots d^D \sigma_{\ell_f} = \int_{\Sigma_n} \frac{\Lambda(t)}{\operatorname{Ber} \mathcal{M}(t)^{D/2}} dt_1 \cdots dt_n.$$

Here:

•
$$q(p) = p^2 - m^2$$
, $q(p) = i(p + m)$, $p = p^{\mu} \gamma_{\mu}$

 \bullet $\Lambda(t)$: uninteresting term depending on t

•
$$\mathcal{M}(t) = \begin{pmatrix} M_b(t) & \frac{1}{2}M_{fb}(t) \\ \frac{1}{2}M_{bf}(t) & M_f(t) \end{pmatrix}$$
, $\text{Ber } \mathcal{M} = \frac{\det(M_b - \frac{1}{4}M_{fb}M_f^{-1}M_{bf})}{\det M_f}$

Therefore, in case of theories with bosonic and fermionic legs, the analogue of the log-divergent case is

$$\int_{\Sigma_n} \frac{\Lambda(t)}{\operatorname{Ber} \mathcal{M}(t)^{D/2}} dt_1 \cdots dt_n$$

for

$$\int_{\Sigma_n} \frac{dt_1 \cdots dt_n}{\det M_{\Gamma}(t)^{D/2}}.$$

Graph supermanifolds

Divergence when Σ_n intersects with the subvar. of \mathbb{P}^{n-1} defined by

$$\frac{\operatorname{Ber} \mathcal{M}(t)^{D/2}}{\Lambda(t)} = 0 \tag{*}$$

Lemma — The zeros of (*) define a divisor in $\mathbb{P}^{n-1|2f}$ of dim. (n-2|2f). The support of this divisor is the same as that of the principal divisor defined by Ber $\mathcal{M}(t)$.

Def. — Γ : graph with bosonic and fermionic edges; B: basis for $H_1(\Gamma, \mathbb{Z})$. Define

$$\mathcal{X}_{(\Gamma,B)} \subset \mathbb{P}^{n-1|2f}$$

to be the locus of zeros and poles of Ber $\mathcal{M}(t)$.

 $\mathcal{X}_{(\Gamma,B)}$ is called the *graph supermanifold*.

Grothendieck ring, motives and supermanifolds

Def. — Let $\mathcal{SV}_{\mathbb{C}}$ be the category of complex supermanifolds. Let $K_0(\mathcal{SV}_{\mathbb{C}})$ denote the free abelian group generated by isom. classes of objects $\mathcal{X} \in \mathcal{SV}_{\mathbb{C}}$ subject to the following:

Let $F: \mathcal{Y} \hookrightarrow \mathcal{X}$ be a closed embedding of supermanifolds. Then

$$[\mathcal{X}] = [\mathcal{Y}] + [\mathcal{X} \setminus \mathcal{Y}],$$

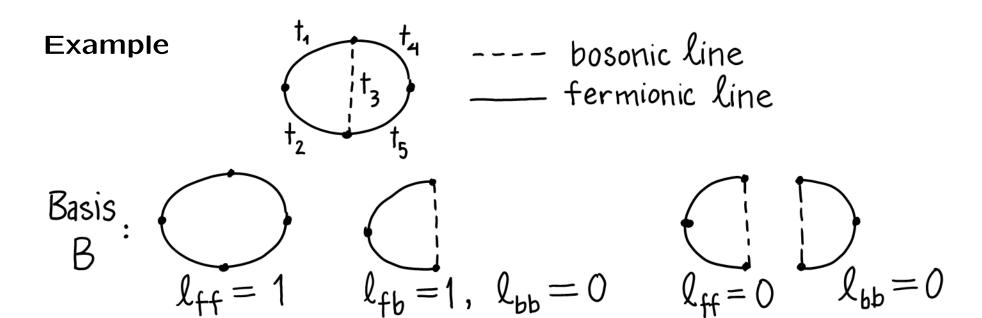
where $\mathcal{X} \setminus \mathcal{Y}$ is the supermanifold

$$\mathcal{X} \setminus \mathcal{Y} = (X \setminus Y, \mathcal{A}_{X|X \setminus Y})$$

(A is a sheaf of supercommutative rings on X)

Prop. — $K_0(\mathcal{SV}_{\mathbb{C}}) = K_0(\mathcal{V}_{\mathbb{C}})[T]$, $T = [\mathbb{A}^{0|1}]$ class of the affine superspace of dim. (0,1). Also, $K_0(\mathcal{SV}_{\mathbb{C}})/I \cong \mathbb{Z}[SSB]$, where I is the ideal gen. by $[\mathbb{A}^{0|1}]$, $[\mathbb{A}^{1|0}]$.

(There are two different kinds of Lefschetz motives: $\mathbb{L}_f = [\mathbb{A}^{0|1}]$, $\mathbb{L}_b = [\mathbb{A}^{1|0}]$.)



Here

$$M_b(t) = t_1 + t_2 + t_3, \quad M_{bf}(t) = (t_1 + t_2, t_1 + t_2 + t_3), \quad M_f(t) = \begin{pmatrix} 0 & t_1 + t_2 \\ -(t_1 + t_2) & 0 \end{pmatrix}$$

Therefore

$$M_{bf}(t)M_f(t)^{-1}M_{fb}(t) = -(t_1 + t_2 + t_3) + t_1 + t_2 + t_3 \equiv 0$$

and

Ber
$$\mathcal{M}(t) = \frac{\det M_b(t)}{\det M_f(t)} = \frac{t_1 + t_2 + t_3}{(t_1 + t_2)^2}.$$

So, $\mathcal{X}_{\Gamma,B} \subset \mathbb{P}^{5|8}$ is the union of $t_1 + t_2 + t_3 = 0$ and $t_1 + t_2 = 0$ in \mathbb{P}^5 with restriction of the sheaf from $\mathbb{P}^{5|8}$.

Universality

Prop. — Let \mathcal{R} be the subring of the Grothendieck ring $K_0(\mathcal{SV}_{\mathbb{C}})$ spanned by $[\mathcal{X}_{(\Gamma,B)}]$ for $\mathcal{X}_{(\Gamma,B)}$ given by the zeros and poles of the Berezinian Ber $\mathcal{M}(t)$ with B a chosen basis for $H_1(\Gamma,\mathbb{Z})$. Then

$$\mathcal{R} = K_0(\mathcal{V}_{\mathbb{C}})[T^2] \subset K_0(\mathcal{S}\mathcal{V}_{\mathbb{C}})$$

where $T = [\mathbb{A}^{0|1}]$.

(square: double counting of fermion legs)

II Graph insertions and singularities

Connes-Kreimer Hopf algebra of renormalization:

$$\Delta(\Gamma) = 1 \otimes \Gamma + \Gamma \otimes 1 + \sum_{\gamma \subset \Gamma} \gamma \otimes \Gamma / \gamma$$

Milnor-Moore: Dual to the Lie algebra of insertions \mathcal{L}_{CK} , with Lie bracket

$$[\Gamma, \Gamma'] = \left(\sum_{\text{all vertices of } \Gamma} \Gamma \leftarrow \Gamma'\right) - \left(\sum_{\text{all vertices of } \Gamma'} \Gamma' \leftarrow \Gamma\right)$$

Kremnizer-Szczesny:

- $K_0(\mathbf{FGph}) \cong \mathbb{Z}[\mathcal{P}]$, \mathcal{P} primitive graphs.
- FGph finitary abelian category and \mathcal{L}_{CK} Ringel-Hall algebra associated to FGph.

Problem — Lift CK insertion to the level of graph polynomials.

Bloch-Esnault-Kreimer:

$$\Psi_{\Gamma} = \Psi_{\gamma} \Psi_{\Gamma/\gamma} + f(A_1, \dots, A_m)$$

where f is of deg $< h_1(\gamma)$ and $m = \#E(\Gamma/\gamma)$.

In joint work with *Christoph Bergbauer*, we found an explicit formula for the analogue of f in case of $\Gamma \leftarrow \Gamma'$, i.e., relate Ψ_{Γ} , $\Psi_{\Gamma'}$ and $\Psi_{\Gamma \leftarrow \Gamma'}$.

Notation/Steps:

• E_v : set of edges in $E_{\Gamma} \cup E_{\Gamma}^{\text{ext}}$ adjacent to vertex v of Γ .

• For e_1 , $e_2 \in E_v$, $e_1 \sim e_2$ iff e_1 , e_2 connected in $\overline{\Gamma - v}$. P_v : resulting partition of E_v .

• $P \leq P_v$: partition of P subordinate to P_v .

• γ_P : graph obtained by merging all the vertices $\partial s(q_1), \ldots, \partial s(q_n)$ for $\{q_1, \ldots, q_n\} \in P$ in γ . (s is the gluing map $E_v \to E_\gamma^{\text{ext}}$).

- Construction of graph $\Gamma^P(d)$:
 - 1. P induces a partition of V_{F_n} denoted as $P' = \partial b P$ ($b : E_v \to E_{F_n}^{\text{ext}}$ fixed bijection).
 - 2. d: spanning tree of F_n s.t. restriction to d of subgraphs of F_n connected.
 - 3. look at $\Gamma \leftarrow F_n$ and remove all edges of d which connect same cells of P'.
 - 4. shrink all edges of d which connect different cells of P'.

Def. — Let $P \leq P_v$ and $\Gamma^P(d)$ as above. Let

$$\tilde{\Psi}_{\Gamma P}(d) := \sum_{t} \prod_{e \notin t} A_{e}$$

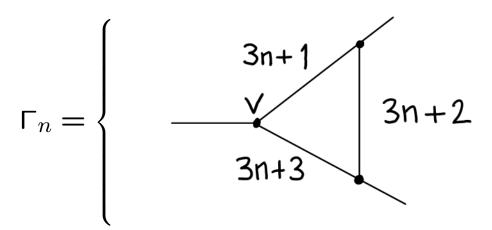
with the sum over all spanning trees t of $\Gamma^P(d)$ s.t. for each $Q \in P$ and e_1 , $e_2 \in Q$, the path in t from e_1 to e_2 does not meet any edges in $E_v \setminus Q$.

Rem. — $\tilde{\Psi}_{\Gamma^P}(d)$ is independent of d, so we can just write $\tilde{\Psi}_{\Gamma^P}$.

Theorem

$$\Psi_{\Gamma \leftarrow \gamma} = \Psi_{\gamma} \Psi_{\Gamma} + \sum_{0 \neq P \leq P_v} \Psi_{\gamma P} \tilde{\Psi}_{\Gamma P}$$

Example



$$\Psi_{\Gamma_n} = A_{3n+1} + A_{3n+2} + A_{3n+3}$$

(Example cont'd)

Look at

$$\Gamma_n \leftarrow \cdots \leftarrow \Gamma_0 = \begin{cases} & 3n+1 \\ & 4 \\ \hline & 5 \cdots \\ & 3n+2 \end{cases}$$

Case n = 1:

$$\tilde{\Psi}_{\Gamma_0,\Gamma_1} = (A_1 + A_3)A_2
\Psi_{\Gamma_1 \leftarrow \Gamma_0} = (A_1 + A_2 + A_3)(A_4 + A_5 + A_6) + (A_1 + A_3)A_2$$

Case n=2:

$$\tilde{\Psi}_{\Gamma_{2},\Gamma_{1}\leftarrow\Gamma_{0}} = ((A_{1}+A_{2}+A_{3})(A_{4}+A_{6})+(A_{1}+A_{3})A_{2})A_{5}$$

$$\Psi_{\Gamma_{2}\leftarrow(\Gamma_{1}\leftarrow\Gamma_{0})} = \begin{cases}
(A_{1}+A_{2}+A_{3})(A_{4}+A_{5}+A_{6})(A_{7}+A_{8}+A_{9}) \\
+(A_{1}+A_{3})A_{2}(A_{7}+A_{8}+A_{9}) \\
+((A_{1}+A_{2}+A_{3})(A_{4}+A_{6})+(A_{1}+A_{3})A_{2})A_{5}
\end{cases}$$

Have a general closed formula as well.

Consequences for singular loci:

Corollary

$$C\tilde{X}_{\gamma,\Gamma} \cap (CX_{\gamma} \cup CX_{\Gamma}) = CX_{\Gamma \leftarrow \gamma} \cap (CX_{\gamma} \cup CX_{\Gamma})$$
 Sing $C\tilde{X}_{\gamma,\Gamma} \cap (CX_{\gamma} \cap CX_{\Gamma}) = \operatorname{Sing} CX_{\Gamma \leftarrow \gamma} \cap (CX_{\gamma} \cap CX_{\Gamma})$ Sing $C\tilde{X}_{\gamma,\Gamma} \cap \operatorname{Sing} CX_{\gamma} = \operatorname{Sing} CX_{\Gamma \leftarrow \gamma} \cap \operatorname{Sing} CX_{\gamma}$ Sing $C\tilde{X}_{\gamma,\Gamma} \cap \operatorname{Sing} CX_{\Gamma} = \operatorname{Sing} CX_{\Gamma \leftarrow \gamma} \cap \operatorname{Sing} CX_{\Gamma}$

Her $C(\cdot)$ is the affine cone over the proj. space (\cdot) , Sing (\cdot) denotes the singular locus, and $\tilde{X}_{\gamma,\Gamma}=\{\tilde{\Psi}_{\gamma,\Gamma}=0\}$.

Example

$$\Gamma = \left\{ \begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right\}, \qquad \gamma = \left\{ \begin{array}{c} 4 \\ 5 \\ 6 \end{array} \right\}$$

$$\Gamma \leftarrow \gamma = \left\{ \begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right. 5$$

$$\Psi_{\Gamma} = A_1 A_2 + A_1 A_3 + A_2 A_3$$

$$\Psi_{\gamma} = A_4 + A_5 + A_6$$

$$\tilde{\Psi}_{\gamma,\Gamma} = A_4 A_5 A_6 + A_1 A_5 (A_4 + A_6) + A_2 A_6 (A_4 + A_5) + A_3 A_4 (A_5 + A_6)$$

 1^{st} term: $P_v = \{\{1,2,3\}\}$

 2^{nd} term: $P = \{\{1\}, \{2,3\}\},$ etc.

Sing
$$CX_{\Gamma \leftarrow \gamma} = \begin{cases} A_1 A_4 + A_1 A_5 + A_1 A_6 + A_4 A_6 = 0, \\ A_2 A_4 + A_2 A_5 + A_2 A_6 + A_4 A_5 = 0, \\ A_3 A_4 + A_3 A_5 + A_3 A_6 + A_5 A_6 = 0. \end{cases}$$

Chern-Schwarz-MacPherson classes

- characteristic classes of singular varieties
- measures "how singular" varieties are
- gives Euler characteristic

Rem. — In general, it is the fact that graph hypersurfaces are singular that we get the motives associated to them to be *mixed* as opposed to pure.

Macaulay 2 computations (based on a program of Aluffi) H: hyperplane class

Wheel with 3 spokes

Fulton class: $27H^5 + 6H^4 + 18H^3 + 9H^2 + 3H$

CSM class: $6H^5 + 12H^4 + 14H^3 + 9H^2 + 3H$

Milnor class: $-21H^5 + 6H^4 - 4H^3$

Half-open ladder

1st insertion: 2nd insertion:

Fulton class: $6H^5 + 12H^4 + 14H^3$ Fulton class: $-162H^8 + 90H^7 + 54H^6 + 108H^5$

 $+8H^2+2H$ $+90H^4+54H^3+18H^2+3H$

CSM class: $5H^5 + 11H^4 + 13H^3$ CSM class: $9H^8 + 34H^7 + 72H^6 + 96H^5$

 $+8H^2+2H$ $+85H^4+50H^3+18H^2+3H$

Milnor class: $-H^5 - H^4 - H^3$ Milnor class: $171H^8 - 56H^7 + 18H^6 - 12H^5$

 $-5H^4-4H^3$

Aluffi-Marcolli: For banana graphs with n parallel edges Γ_n , $n \geq 3$,

$$\chi(X_{\Gamma_n}) = n + (-1)^n. \tag{*}$$

Conjecture — A formula very similar to (*) holds true for the family of half-open ladders.

III

String vacua and computation theory

String vacua and computation theory

 \mathcal{C} : configuration space of string vacua

- ullet Landscape of string vacua, $|\mathcal{C}| \sim 10^{500}$ distinct solutions
- Question: is it possible to separate one point in \mathcal{C} from another? Answer: *No!*
 - choice of average unification gauge group
 - moduli space of Ricci-flat metrics on a Calabi-Yau space
 - periods of Calabi-Yau and decidability

SM gauge group:

$$G_{SM} = SU(3) \times SU(2) \times U(1)/(\mathbb{Z}/6\mathbb{Z})$$

Expect: at high energy ($\sim 10^{16}\,\text{GeV}$), by running coupling constants, G_{SM} is a subgroup of some larger G.

There are representation-theoretic constraints on what G can be (assuming invariance under Poincaré group, etc.).

Choices for G:

SU(5), Spin(10),
$$E_6$$
, (Spin(6) × Spin(4))/($\mathbb{Z}/2\mathbb{Z}$)

Our requirements on G based on the fact that they describe the universe we live in!

Over C, G can be wildly different!

Question — Can we describe whether an arbitrary G for a point in \mathcal{C} contains G_{SM} or not?

Central parameter for statistical analysis:

average rank of the gauge group (w.r.t. suitable measure on C)

This is expressed in terms of the complex moduli of the compactified space and configuration of D-branes mapping it.

Kumar-Wells: Fraction of all SUSY vacua that have gauge group rank R above SM gauge group rank R_{SM} is

$$\eta \sim \exp\left(-rac{R_{SM}}{\langle R
angle}
ight)$$

Gmeiner et al.: order of 10^{-9} .

Formulation

Fix a point in C and write the gauge group rank as \mathbf{r} and the corresponding gauge group as \mathbf{G} . Imagine there exists a sequence of groups G_i with rank $G_i = \alpha_i$ such that either

- ullet each individual G_i is a subgroup of ${f G}$ satisfying the set of conditions on $G\supset G_{SM}$
- \bullet or a product of G_i 's satisfies the same.

Theorem — Given the rank \mathbf{r} of \mathbf{G} and the ranks of G_i being α_i , it is an NP-complete decision problem whether we can find a subsequence G_k , $1 \le k \le n$, n = |I|, such that $\alpha_1 + \alpha_2 + \cdots + \alpha_n = \mathbf{r}$.

Proof is a direct application of subset-sum theorem and the *Grishko-H. Neumann* theorem on ranks of free products of groups:

$$\operatorname{rk}(G_1 * G_2) = \operatorname{rk} G_1 + \operatorname{rk} G_2.$$

One of our other results show a close formal similarity between the space

$$Met(M) = Riem(M) / Diff(M),$$

of Riemannian metrics on smooth closed manifolds modulo diffeo's, and the space

$$Met_J(X)$$

of metrics on a Calabi-Yau X with a fixed Kähler form J.

In case of Met(M) we know, following Nabutovsky-Weinberger, that it has a fractal structure. We expect the same for $Met_J(X)$ for arbitrary X. This implies that the problem of explicitly finding Ricci-flat metrics for a given X is computationally hard.

Periods and string vacua

N=2 SUSY on CY 3-fold X

$$\varpi_i = \int_{\gamma^i} \Omega, \qquad \Omega$$
: hol. 3-form; γ^i : basis of homology cycles

Fundamental period ϖ_0 can be explicitly computed for a large class of CY's.

Example — 1-param. family of quintic 3-folds given by $p(x, \psi) = \sum_{k=1}^{5} x_k^5 - 5\psi x_1 \cdots x_5$ with coordinates identified under the action of $G = (\mathbb{Z}/5\mathbb{Z})^3$:

$$\varpi_0(\psi) = \sum_{n=0}^{\infty} \frac{(5n)!}{(n!)^5 (5\psi)^{5n}}$$

with $|\psi| \ge 1$, $0 < \arg \psi < \frac{2\pi}{5}$.

After analytic continuation to $|\psi| < 1$:

$$\varpi_0(\psi) = -\frac{1}{5} \sum_{m=1}^{\infty} \frac{\Gamma(\frac{m}{5})(5\alpha^2 \psi)^m}{\Gamma(m)\Gamma^4(1 - \frac{m}{5})}$$

Idiosyncratic — Each point in \mathcal{C} identified with a fundamental period.

Question — Can we distinguish points this way?

Answer — Unlikely, based on work of *Yoshinaga* and general expectations about periods.