The intersection product as the chromatic polynomial (after Aluffi)

Abhijnan Rej Max-Planck-Institut für Mathematik, Bonn

July 25, 2006

Main reference

Aluffi, P.: A blow-up construction and graph coloring, Discrete Mathematics **145**, 1995, 11-35.

Basic problem/philosophy

Given a *simple* graph G, attach a variety to it V_G such that one can translate combinatorial data on G into algebro-geometric data on V_G . More precisely:

Goal Create an intersection-theoretic interpretation of the proper coloring problem for a simple graph. Give geometric proofs of standard results in combinatorics.

A blowup construction

G: connected simple graph (ie, no loops or parallel edges with one conn comp). **Fix** some dimension n for the ambient proj. space.

- Place each vertex of G at some point in \mathbb{P}^n s.t. all of these points are lin. indep.
- For each edge in G, draw a line joining the corresponding vertices in \mathbb{P}^n

$$\leadsto$$
 a curve $C \subset \mathbb{P}^n$

• H: general hyperplane in \mathbb{P}^n . $C \cap H$ gives a config of points $\{e_k\}$, $k \in$ some finite index set. Each e_k corresponds to an edge of G (by contruction).

- \bullet x_r^d 's: d-dim'l subspaces of \mathbb{P}^n spanned by the e_k 's. Order them by d such that x_k^0 is e_k 's.
- y_r^{d} 's: subspaces of \mathbb{P}^n obtained by intersecting collections of x_r^{d} 's **provided** these subspaces are not already in the list of x_r^{d} 's.

Rk: y_r^d 's are closed w.r.t intersections.

Let $V_0 = \mathbb{P}^n$ and

$$V_{d+1} \longrightarrow V_0$$

a blowup for $d \geq 0$ along the proper transform of x_r^d 's and y_r^d 's.

Blowups along dim d subspaces seperates the proper transforms of dim d+1 subspaces containing them

 \Rightarrow center of the blowups for each d are necessarily disjoint

⇒ a tower of varieties

$$V_G \xrightarrow{\pi_k} \dots \xrightarrow{\pi_1} V_0 = \mathbb{P}^n$$

 π_i 's are blowups.

Rk 1: k is finite since G is finite.

Rk 2: V_G depends on the dim n of V_0 .

Call V_G the graph variety associated to the graph G.

Divisor classes in the graph variety

Notations

- H_0 : pullback of the hyperplane class from \mathbb{P}^n .
- E_r^d : pullback of the exceptional divisors arising from the blowups of x_r^d .
- F_r^d : pullback of the exceptional divisors arising from the blowups of y_r^d .
- \bullet H_r^d : proper transforms of general hyperplanes containing x_r^d .
- R: dim of the subspace spanned by all the e_k 's (i.e. x_k^0 's.)

Rk: R+1=# of vertices of G.

Def. of S(t), a polynomial in Pic $V_G[t]$:

$$S(t) := t^{R+1}H_0 - \sum_{d,r} t^{R-d}E_r^d$$

Recall (for a nonsingular scheme X):

Pic $X \stackrel{\text{def}}{=}$ ab. group of divisors of X mod lin. equivalence.

By construction,

 H_0 , the H_r^d and the F_r^d are a basis of Pic V_G .

 $A_1(X) \stackrel{\text{def}}{=}$ ab. group of 1-cycles on X mod rat. equivalence.

Recall that a cycle

$$Z \sim_{\mathsf{rat}} Z' \iff Z - Z' \sim_{\mathsf{rat}} 0$$

and that for Z arbit. cycle of codim i, $Z \sim_{\mathsf{rat}} 0 \iff \exists (Y_\alpha, f_\alpha)$ where Y_α is a closed irreducible subscheme of codim i-1 and f_α rat. fun on Y_α such that $\sum_\alpha \mathsf{div}(f_\alpha) = Z$.

Poincare duality and intersection pairingThe pairing

$$A_1(X) \times \operatorname{Pic} X \longrightarrow k$$

is given by

$$c_1(L) \cdot [Z] = \sum_i m_i[x_i] \leadsto \sum_i m_i$$

where

$$L \in \operatorname{Pic} X \text{ and } [Z] \in A_1(X)$$

 $m_i \in \mathbb{Z}$ and $[x_i]$ a 0-dim'l cycle.

Main theorem: I

By the pairing above,

$$\exists \gamma \in A_1(V_G) \text{ s.t. } \gamma$$

is dual to H_0 w.r.t. the basis of Pic V_G

 $\iff H_0 \cdot \gamma = 1, H_r^d \cdot \gamma = 0, F_r^d \cdot \gamma = 0 \forall d, r$ m: # of colors in the palette.

Main theorem:

of ways G can be colored properly is

$$mS(m) \cdot \gamma$$

Corollary:

G can be colored properly with m colors iff

$$S(m) \cdot \gamma \neq 0$$

Example

G: complete graph with 4 vertices

$$\rightsquigarrow$$
 6 edges $\{x_k^0\}$, $k = 1, \dots, 6$.

Know trivially that # of ways G can be colored properly with m colors is

$$m(m-1)(m-2)(m-3),$$

ie, all four vertices have different colors.

Want to show this fact using main theorem.

$$E_k^0 \cdot \gamma = 1, \quad k = 1, \dots, 6,$$

$$E_r^1 \cdot \gamma = -2, \quad r = 1, \dots, 4,$$

$$E_r^1 \cdot \gamma = -1, \quad r = 5, 6, 7,$$

$$E^2 \cdot \gamma = 6 \quad \text{(for the whole plane)}.$$

So, $mS(m) \cdot \gamma$ equals:

$$m(m^3 - (6 \cdot 1)m^2 - (-2 \cdot 4 - 1 \cdot 3)m - (1 \cdot 6))$$
$$= m(m-1)(m-2)(m-3)$$

as desired!

Compatibility with contractions

 $x_r^d \leadsto \text{collection of edges of graph } G.$

 G_r^d : graph obtained by collapsing the collection corresponding to \boldsymbol{x}_r^d

 γ_r^d : dual of H_r^d in the basis $\{H_0,H_r^d,F_r^d\}$ of Pic $V_{G_r^d}.$

Corollary:

 $mS(m) \cdot \gamma_r^d$ is the # of proper m-colorings of the contraction G_r^d .

Lattice of subspaces

 (L, \leq) a poset. L is called a **lattice** if $\forall x, y \in L$, the set $\{x, y\}$ has a least upper bound (join) in L and a greatest lower bound (meet) in L. Denote lub as $x \vee y$ and glb as $x \wedge y$.

 $\mathcal{L} = \mathcal{L}(C)$: lattice of subspaces spanned by any (finite) collection C of points in \mathbb{P}^n .

 \mathcal{L} is partially ordered by inclusion of subspaces.

≤: order by inclusion

 \vee, \wedge : join and meet (resp.) of the lattice

x, y, z: elements of \mathcal{L}

 $r(x) \stackrel{\text{def}}{=} 1 + k$ where $k = \dim(x)$, when viewed as a subspace in \mathbb{P}^n .

0: empty set (minimum) of \mathcal{L} .

1: maximal subspace (spanned by all points)

$$r(0) \stackrel{\text{def}}{=} 0, \quad r(\mathcal{L}) \stackrel{\text{def}}{=} r(1).$$

Construction of the variety $V_{\mathcal{L}}$

ullet Choose $\mathcal L$ a family of subspaces of $\mathbb P^n$.

 \mathcal{M} : family of subspaces $\notin \mathcal{L}$ (obtained by intersection collections of elts of \mathcal{L}).

- Extend rank and \leq to elts of \mathcal{M} .
- $V_{\mathcal{L}}$ is obtained from \mathbb{P}^n by blowing up the proper transforms of nonzero x in \mathcal{L} and \mathcal{M} in order of inc. dim.

$$V_{\mathcal{L}} \longrightarrow V^{(1)} \longrightarrow V^{(2)} \longrightarrow \ldots \longrightarrow V_0 = \mathbb{P}^n,$$
 where

dim
$$V^{(2)} > \dim V^{(1)}$$
, etc.

For $G = \mathcal{L}$, the two constructions coincide.

 H_x : class of proper transform of gen. hyperplane, $x \in \mathcal{L}$

 E_x : pullback of the excep. divisor over $x \in \mathcal{L}$ $(x \neq 0)$

 F_x : pullback of the excep. divisor over $x \in \mathcal{M}$.

 $\forall x \in \mathcal{L}$, let γ_x be a 1-class such that $\gamma_x \cdot H_x = 1$, $\gamma_x \cdot H_y = 0 \quad \forall y \neq x$, and $\gamma_x \cdot F_z = 0 \quad \forall z \in \mathcal{M}$.

$$S(t) \stackrel{\text{def}}{=} t^{r(\mathcal{L})} H_0 - \sum_{x \in \mathcal{L}, x \neq 0} t^{r(\mathcal{L}) - r(x)} E_x.$$

Compatibility with deletion

C': subset of the set of rank 1 elements of \mathcal{L}

 $\rightsquigarrow \mathcal{L}(C')$: sublattice of \mathcal{L} (referred to as the deletion of \mathcal{L} , analogous to deletion of edges in the case of graphs).

There exists a unique map $\rho: V_{\mathcal{L}} \longrightarrow V_{\mathcal{L}(C')}$.

Reason: Universal property of blowups!

$$\begin{array}{ccc} V_{\mathcal{L}} & \xrightarrow{\rho} & V_{\mathcal{L}(C')} \\ \downarrow & & \downarrow \\ V_0 & = & V_0 \end{array}$$

(Inverse image of ρ is a Cartier divisor in $V_{\mathcal{L}}$.)

Characteristic polynomial of $\mathcal L$

Möbius-Rota function on a given lattice \mathcal{L} :

$$\mu_{\mathcal{L}}: \mathcal{L} \times \mathcal{L} \longrightarrow \mathbb{Z}$$

is given by

$$\sum_{x \le y \le z} \mu_{\mathcal{L}}(x, y) = \begin{cases} 0 & \text{if } x \ne z \\ 1 & \text{if } x = z \end{cases} \text{ for } x \le z,$$

and

$$\mu_{\mathcal{L}}(x,z) = 0$$
 for $x \nleq z$.

Characteristic polynomial of \mathcal{L} is:

$$P(\mathcal{L},t) \stackrel{\text{def}}{=} \sum_{x \in \mathcal{L}} \mu_{\mathcal{L}}(0,x) t^{r(\mathcal{L})-r(x)}.$$

Main Theorem: II

Observation:

of proper colorings of a graph G with m colors is

$$mP(\mathcal{L}, m),$$

where \mathcal{L} is the lattice determined by G.

Theorem: For any lattice \mathcal{L} ,

$$P(\mathcal{L},t) = S(t) \cdot \gamma_0.$$

Sketch of the proof

From the definition of $\mu_{\mathcal{L}}$, observe that:

$$\mu_{\mathcal{L}}(0,0) = 1 = H_0 \cdot \gamma_0.$$

Need to show that

$$\mu_{\mathcal{L}}(0,z) = -E_z \cdot \gamma_0$$
 for nonzero $z \in \mathcal{L}$.

By definition of MR function, need to show that:

$$\mu_{\mathcal{L}}(0,0) + \sum_{0 < y \le z} (-E_y \cdot \gamma_0) = 0 \text{ for } z \ne 0.$$

By construction,

$$H_z = H_0 - \sum_{y \in \mathcal{L}, 0 < y \le z} E_y - \sum_{x \in \mathcal{M}, x < z} F_x.$$

 \Longrightarrow LHS of * is

$$(H_0 - \sum_{y \in \mathcal{L}, 0 < y \le z} E_y - \sum_{x \in \mathcal{M}, x < z} F_x) \cdot \gamma_0$$

= $H_z \cdot \gamma_0 = 0$.