IMSc Workshop on Noncommutative Geometry and Quantum Physics

Quantum Groups I: Mathematical Aspects

Abhijnan Rej
Department of Mathematics & Statistics
Boston University

27th July 2005

Overview

- Hopf algebras in the language of commutative diagrams and "classical" examples,
- Quantum groups according to Drinfel'd,
- ullet Examples of quantum groups, mostly q-deformed matrix groups,
- Elements of C^* theory of *compact* quantum groups, mainly Woronowicz's construction of $SU_q(2)$,
- Notion of isomorphism of quantum groups,
- A classification theorem for $SU_q(2)$ due to Wang and its consequence for noncommutative geometry.

Algebras, Coalgebras and Bialgebras

By an algebra we mean a unital, associative algebra over some field k, char k=0.

An algebra A is a triple (A, μ, η) where A is a k-linear vector space,

$$\mu: A \otimes A \rightarrow A, \mu(a \otimes b) := ab$$

is the (k-linear) multiplication map and

$$\eta: k \to A, \ \operatorname{Im}(\eta) \subset Z(A),$$

is the unit map and such that the following diagrams commute:

$$\begin{array}{cccc} A \otimes A \otimes A & \xrightarrow{\operatorname{id} \otimes \mu} & A \otimes A \\ \mu \otimes \operatorname{id} & & & \downarrow \mu \\ & & & A \otimes A & \xrightarrow{\mu} & A \end{array}$$

and

What the previous diagrams express is simply the associativity of μ and the existence of a unit in the algebra: $\eta(1_k) = 1_A$.

We say that A is commutative if $\mu = \mu \circ \tau$, where $\tau : A \otimes A \rightarrow A \otimes A$ is the flip map $(a \otimes b \mapsto b \otimes a)$.

Now one can be really adventurous and ask whether the arrows in the preceding diagrams can be reversed. That is can we define some $\Delta:A\to A\otimes A$ and $\epsilon:A\to k$ such that they satify these "new" commutative diagrams?

The answer is yes!

Suppose we have the maps $\Delta:A\to A\otimes A$ and $\epsilon:A\to k$ such that the following diagrams commute:

$$\begin{array}{ccccc} A \otimes A \otimes A & \stackrel{\mathsf{id} \otimes \Delta}{\longleftarrow} & A \otimes A \\ \Delta \otimes \mathsf{id} & & & & & & & & & & \\ A \otimes A & & \stackrel{\Delta}{\longleftarrow} & A & & & & & & & & A \end{array}$$

and

Then we have a coalgebra!

A coalgebra is said to be cocommutative if $\tau \circ \Delta = \Delta$.

We now demand the following compatibility conditions from Δ and ϵ :

 $\Delta(ab) = \Delta(a)\Delta(b)$ and $\epsilon(ab) = \epsilon(a)\epsilon(b) \forall a, b \in A$. With these conditions the tuple $(A, \mu, \eta, \Delta, \epsilon)$ is a *bialgebra*.

Hopf algebras

Let $(A, \mu, \eta, \Delta, \epsilon)$ be a bialgebra. Suppose $\exists S$: $A \to A$ such that the following diagram commute:

$$\begin{array}{ccc}
A & \xrightarrow{\eta \circ \epsilon} & A \\
\Delta \downarrow & & \uparrow \mu \\
A \otimes A & \xrightarrow{\mathsf{id} \otimes S, S \otimes \mathsf{id}} & A \otimes A
\end{array}$$

Then the tuple $(A, \mu, \eta, \Delta, \epsilon, S)$ is said to be a *Hopf algebra*. The map $S: A \to A$ is called the antipode of A.

- A cocommutative or commutative $\implies S^2 = \text{id}$.
- The antipode satisfies S(ab) = S(b)S(a).
- Arrow-reversal duality reverses order of composition: e.g. $\mu \circ (\mu \otimes id) = \mu \circ (id \otimes \mu)$ becomes $(id \otimes \Delta) \circ \Delta = (\Delta \otimes id) \circ \Delta$.

Classical examples of Hopf algebras

Let G be a finite group with identity e.

Example 1

Let kG be a vector space with basis G. It is a Hopf algebra with

- ullet Algebra multiplication on kG to be group multiplication.
- Comultiplication on kG as $\Delta(g) = g \otimes g$.
- Unit map $\eta(1) = e$ and counit map $\epsilon(g) = 1$.
- Antipode $Sg = g^{-1}$.

This is an example of a cocommutative Hopf algebra. If G is commutative, then kG is commutative as well. Notice also that $S^2 = \mathrm{id}$.

Example 2

Let $k(G) = \{f : G \to k\}$. It is a Hopf algebra with

- Algebra structure being ptwise multiplication $(fg)(x) = f(x)g(x) \forall x \in G$.
- Comultiplication being $(\Delta f)(x,y) = f(xy)$ after the identification $k(G) \otimes k(G) = k(G \times G)$.
- Unit map $\eta(1) = \text{id}$ and counit map $\epsilon(f) = f(e)$.
- Antipode $(Sf)(x) = f(x^{-1}).$

It is commutative but not cocommutative. Notice $S^2 = id$ (still).

Question: Examples of Hopf algebras with $S^2 \neq id$?

Answer:

Quantum groups!

<u>Definition</u>(due to Drinfel'd)

A *quantum group* is noncommutative and non-cocommutative Hopf algebra.

We qualify the adjective 'quantum' for such structures after the following:

Example

Let $k\{a,b,c,d\}$ be a free algebra and $q \in k \setminus \{0\}$. The quotient $SL_q(2) = k\{a,b,c,d\}/I_q$ is a quantum group where I_q is the ideal generated by the relations (q-commutativity)

$$ca = qac, ba = qab, db = qbd, dc = qcd, bc = cb,$$

$$da - ad = (q - q^{-1})bc$$

and the q-determinant condition

$$ad - q^{-1}bc = 1.$$

On $SL_q(2)$, the comultiplication is given by

$$\Delta \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \dot{\otimes} \left(\begin{array}{cc} a & b \\ c & d \end{array} \right).$$

The counit is given by

$$\epsilon \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = \left(\begin{array}{cc} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{array} \right).$$

The antipode is given by

$$S\left(\begin{array}{cc}a&b\\c&d\end{array}\right) = \left(\begin{array}{cc}d&-qb\\-q^{-1}c&a\end{array}\right).$$

Remarks:

- Clearly $SL_q(2)$ is noncommutative. It is also noncocommutative which can be verified by performing $\tau \circ \Delta$. The catch (though not here!) is however to remember that an expression like $\Delta(a) = a \otimes a + b \otimes c$ is actually $\Delta(a) = a^{(1,1)} \otimes a^{(1,2)} + b^{(2,1)} \otimes c^{(2,2)}$.
- We consequently see that $S^2 \neq \text{id}$ on all the generators: e.g. $S^2(b)$ and $S^2(c)$.

Thus we have a valid example of a quantum group a lá Drnifel'd. The adjective 'quantum' is justified because setting q=1 in $SL_q(2)$ allows us to get SL(2) with entries in some commutative algebra.

Conventionally,

$$q = \exp \hbar$$

so that $\hbar \to 0 \implies q \to 1$.

We note that by removing the q-det = 1 condition, we get $GL_q(2)$. If we choose to forget about q-det altogether, we obtain a q-deformation of the matrix group $M_q(2)$.

R.J. will talk more about q-deformed structures tommorrow. We are now ready to march towards compact quantum groups.

Hopf *- and C^* -algebras

Let (A, μ, η) be an algebra. Let $*: A \rightarrow A$ satisfy

$$* \circ * = id,$$

$$* \circ \mu = \mu \circ (* \otimes *) \circ \tau.$$

The tuple $(A, \mu, \eta, *)$ is called a *-algebra.

The algebra $A = \mathbf{H}$ and $k = \mathbf{R}$ is a *-algebra where * is the quaternion conjugation map. Perhaps people already see what I'm going to do next: dualize the above definition!

We want the following diagram to commute:

$$\begin{array}{ccc}
A & \xrightarrow{*} & A \\
\Delta \downarrow & & \downarrow \Delta \\
A \otimes A & \xrightarrow{*\otimes *} & A \otimes A
\end{array}$$

Reminder: This just states that $\Delta \circ * = (* \otimes *) \circ \Delta$, almost the dual of the second statement in the above definition.

Example

Recall the example of the group function Hopf algebra k(G)- we take $k = \mathbf{C}$ and for some $f \in \mathbf{C}(G)$, define $f^* = \overline{f}$, cpx conjugation. $\mathbf{C}(G)$ is a Hopf *-algebra.

Check:

We see that $\Delta(f^*)(x,y) = f^*(xy) = \overline{f(xy)} = \overline{\Delta f(x,y)} = \overline{\Sigma f^{(1)}(x)f^{(2)}(y)} = \Sigma f^{(1)*}(x)f^{(2)*}(y) = (*\otimes *)\Delta(f)(x,y)$. We have again made the identification $C(G\times G) = C(G)\otimes C(G)$.

For the sake of completeness, we note:

Definition

A C^* -algebra is an algebra with a *-structure and a norm $\|.\|$, such that * is compatible with the norm as $\|x^*x\| = \|x\|^2$.

We note a key embedding theorem due to Gel'fand and Nàimark that we would be using next:

Theorem

Every C^* -algebra is isomorphic to a C^* -subalgebra of bounded linear operators on a possibly ∞ -dimensional Hilbert space.

We would be dealing with $SU_q(2)$ next. It is a Hopf C^* -algebra which is, to wit, the tuple $(SU_q(2), \mu, \eta, \Delta, \epsilon, *, \|.\|)$ where the morphisms will be defined shortly.

The following construction is to Woronowicz:

Let A be a *-algebra generated by the elements α and γ and satisfying

$$\alpha^*\alpha + \gamma^*\gamma = 1, \alpha\alpha^* + q^2\gamma^*\gamma = 1,$$

$$\gamma^* \gamma = \gamma \gamma^*, \alpha \gamma = q \gamma \alpha, \alpha \gamma^* = q \gamma^* \alpha,$$

where q is a nonzero real number. The construction of $SU_q(2)$ goes as follows:

• Represent every element of A as an (b.l.) operator on some Hilbert space \mathcal{H} . To do so, it suffices to prescribe the representation $\pi:A\to B(\mathcal{H})$ only on α and γ : $\pi:\alpha\mapsto\widehat{\alpha}$ and $\pi:\gamma\mapsto\widehat{\gamma}$. Such a representation is going to be admissible if $\widehat{\alpha}$ and $\widehat{\gamma}$ satisy the same commutation relations as α and γ .

• For every $a \in A$, define

$$||a|| = \sup_{\pi} ||\pi(a)||,$$

where the sup runs over all admissible representations. Let N be the two-sided ideal of elements of A of vanishing norm.

• Consider the quotient $\mathcal{A} := A/N$. The norm $\|.\|$ induces a norm on \mathcal{A} .

We <u>define</u> A as the completion of A in this norm. The C^* -algebra A is $SU_q(2)$. This is our first example of a compact quantum group.

Explicit representations of $SU_q(2)$ are hard to write down. Consult Dabrowski's "The geometry of quantum spheres".

Woronowicz gave the C^* -algebra $SU_q(2)$ the structure of a Hopf algebra as well in the following way:

Let

$$u = \left(\begin{array}{cc} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{array}\right).$$

The matrix elements of u generate the C^* -algebra \mathcal{A} and also A. On these elements, define the comultiplication

$$\Delta(u) = u \dot{\otimes} u,$$

and the antipode

$$S\left(\begin{array}{cc} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{array}\right) = \left(\begin{array}{cc} \alpha^* & \gamma^* \\ -q\gamma & \alpha \end{array}\right).$$

The (unimportant) counit maps u to the identity matrix.

Isomorphism of $SU_q(2)$ and a classification theorem

The following definition of *isomorphism* for compact quantum groups was suggested by Wang. Here we will state it only for $SU_q(2)$. Let $SU_q(2)$ and $SU_{q'}(2)$ have comultiplication Δ and Δ' respectively. Let

$$\Gamma: SU_q(2) \to SU_{q'}(2)$$

be a *-homomorphism. That is, $\Gamma(x^*) = \Gamma(x)^*$. We demand of Γ that the it makes the following diagram commute:

$$SU_q(2)\otimes SU_q(2) \xrightarrow{\Gamma\otimes\Gamma} SU_{q'}(2)\otimes SU_{q'}(2)$$

$$\Delta \uparrow \qquad \qquad \uparrow \Delta'$$

$$SU_q(2) \xrightarrow{\Gamma} SU_{q'}(2)$$

If Γ is an isomorphism, then we say that $SU_q(2)$ are $SU_{q'}(2)$ are isomorphic.

A theorem of Wang states that:

For q,q' nonzero reals, $SU_q(2)$ and $SU_{q'}(2)$ are isomorphic in the preceding sense (that is, as $\underline{\mathsf{Hopf}}\ C^*$ -algebras) if and only if q'=q or $q'=q^{-1}$.

Contrast this with a theorem of Woronowicz which states that $SU_q(2)$ and $SU_{q'}(2)$ are always isomorphic as C^* -algebras.

These two theorems, taken together, have a rather interesting consequence for noncommutative geometry!

Recall the first Gel'fand-Naimark theorem: Given a (compact, Hausdorff) space X and a commutative C^* -algebra of functionals on X with unit C(X), we can "recover" all the properties of X from C(X). In particular, if X and Y are homeomorphic, then C(X) and C(Y) are isomorphic as C^* -algebras.

What Woronowicz's theorem is stating is that, IF we are to imagine $SU_q(2)$ as a C^* -algebra of functionals on some "space" X_q , then this correspondence $X_q \to C(X_q) := SU_q(2)$ is "insensitive" to the choice of the deformation parameter q. Making $q \to q'$ will still give us the same C^* -algebras.

On the other hand, what Wang's theorem is suggesting is that IF we require that the correspondence $X_q \to C(X_q)$ give us a Hopf C^* -algebra of functionals on the same "space", then the correspondence is sensitive to the choice of q. Scaling q will (almost always) give us nonisomorphic Hopf C^* -algebras.